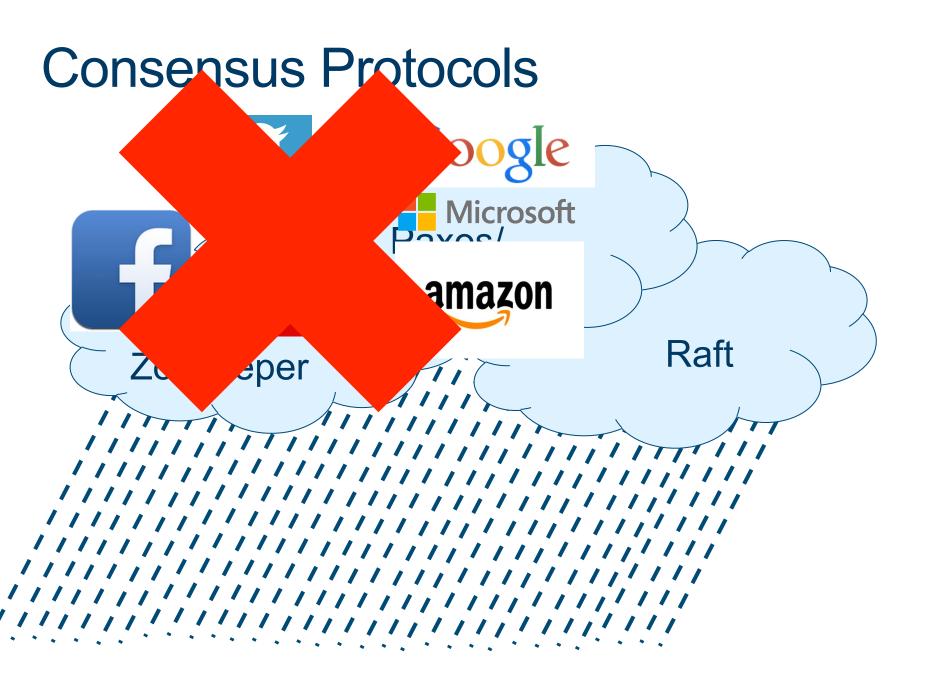
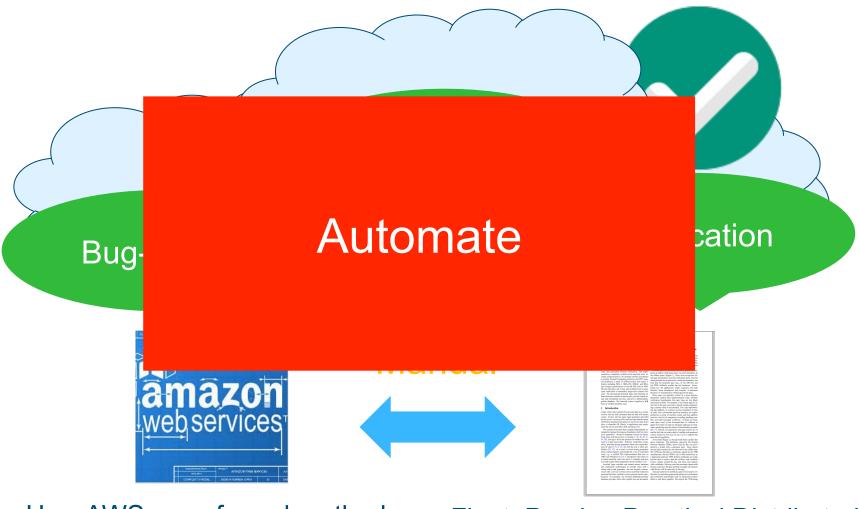
Synthesizing Cardinality Invariants for Parameterized Systems

Klaus v. Gleissenthall, TU Munich

Nikolaj Bjørner and Andrey Rybalchenko, Microsoft Research



Verification efforts:



How AWS uses formal methods. CACM'15

Fleet: Proving Practical Distributed
Systems Correct.
SOSP'15

We need cardinalities

If the proposer receives the requested responses from a majority

Paxos (ACM Sigact News '01)

Cardinalities in the description

if $(sCount_i \ge f+1)$ then $sFlag_i = true$ else $sFlag_i = false$

ASAP (DISC'08) 26: T_p^r :

28:

27: if $p = Coord(p, \phi)$ and

number of $\langle ack \rangle$ received > n/2 then $ready_p := true$

Last Voting (Distr. Computing'09)

We need cardinalities

Cardinalities in the proof

Lemma 2.4.1 level *j*.

We need to reason about cardinality.

-j threads at

g

A (very) simple example:

If there is a thread at location 2, then a>0

```
global int a=0;
1: a++;
2:
```

Example: in logic

Local variables as functions

initial states:

 $\forall t: pc(t)=1 \land a=0$

primed =
 after
transition

transition relation

safety

$$pc(me)=2 \rightarrow a>0$$

Example: constraints

inv

 $\forall t: pc(t)=1 \land a=0$

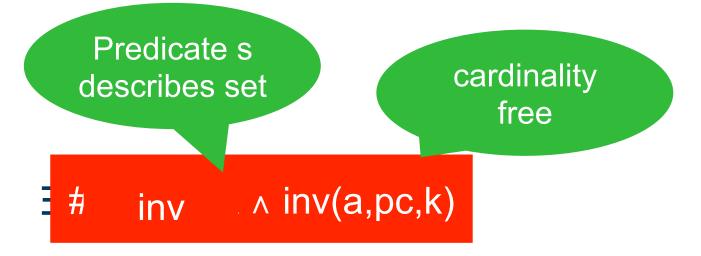
inv(a,pc)

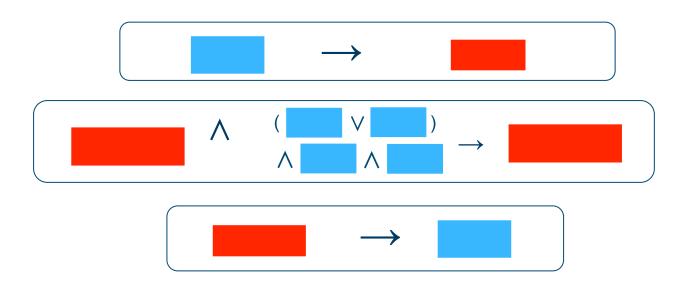
inv(a,pc) ∧ pc(me)=1 ∧ pc':=pc(me←2) ∧ a'=a+1

→ inv(a',pc')

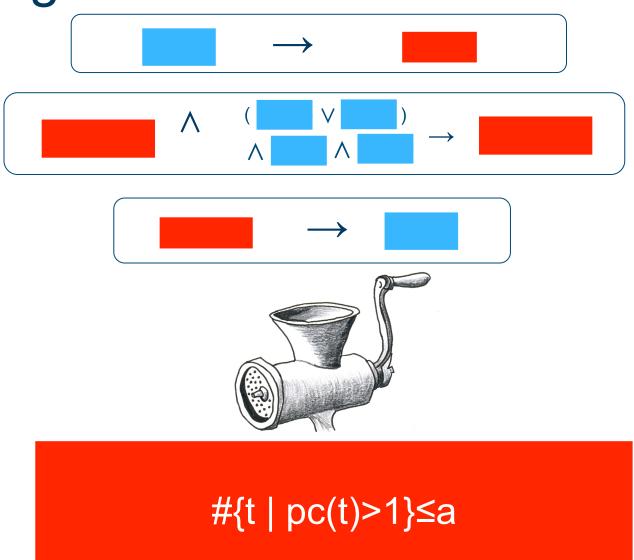
inv(a,pc) \rightarrow pc(me)=2 \rightarrow a>0

Restricting the search space:





Solving:



Example: checking the solution

Set is empty

 $\forall t: pc(t)=1 \land a=0$

 \longrightarrow

0≤0

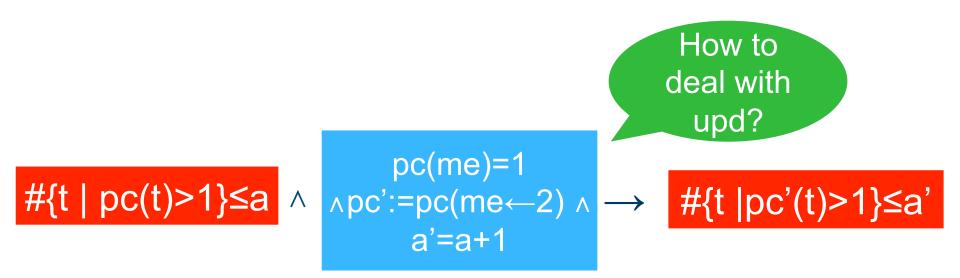
Set is nonempty

1≤a

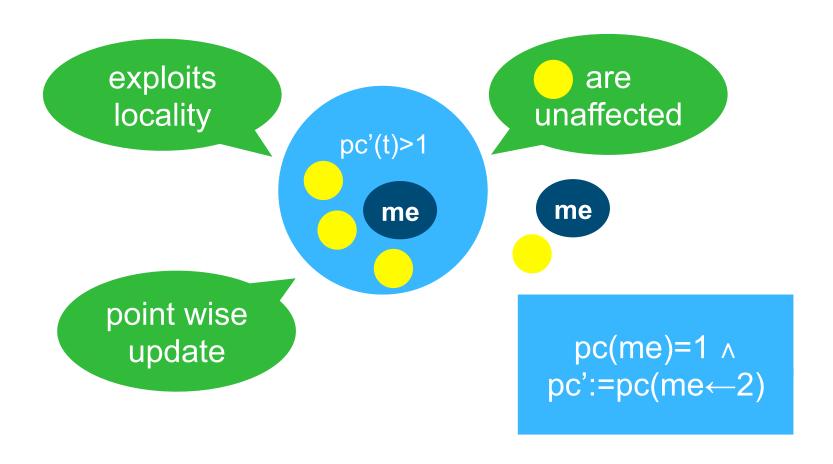
 \longrightarrow

 $pc(me)=2 \rightarrow a>0$

Example: point wise update

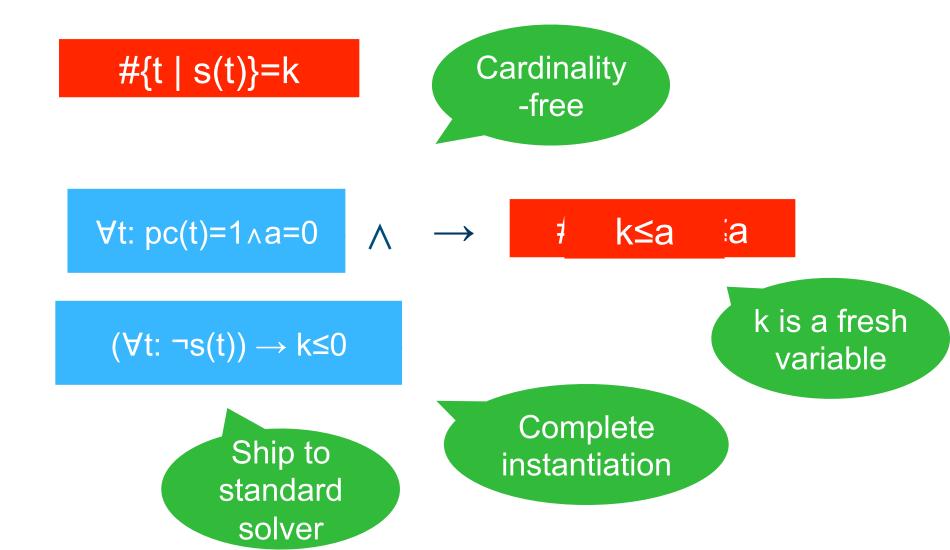


Example: point wise update



Example: finding the solution

Example: finding the solution



Axioms: inequality

Equality comparison

$$\#\{t \mid s(t)\} = k$$

$$\#\{t \mid p(t)\}=I$$

 $(\forall t: s(t) \rightarrow p(t)) \rightarrow k \leq l$

Axioms: emptiness (derived)

 $\#\{t \mid s(t)\} = k$

#{t | false }=0

 $(\forall t: \neg s(t)) \rightarrow k \leq 0$

Axioms: strict inequality

```
(\forall t:s(t)\rightarrow p(t)) \land (\exists t:\neg s(t) \land p(t)) \rightarrow k < I
```

Additional witness

Axioms: update

Relatively complete wrt.
Difference bound constrains.

$$\#\{t \mid s(t)\} = k$$

$$p=s[g/f]$$

$$\#\{t \mid p(t)\} = I$$

$$g = f[me \leftarrow_]$$

$$I = k-s(me)+p(me)$$

We also do
Venndecomposition

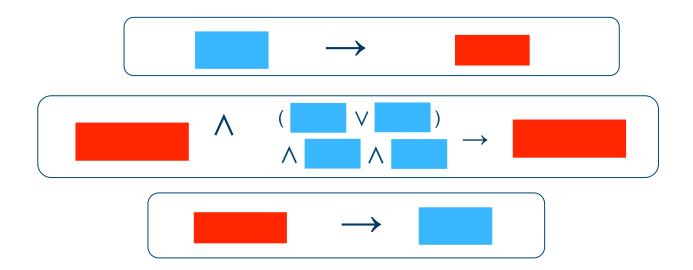
Assume they evaluate to 0 or 1

Adding quantifiers:

forallquantifier

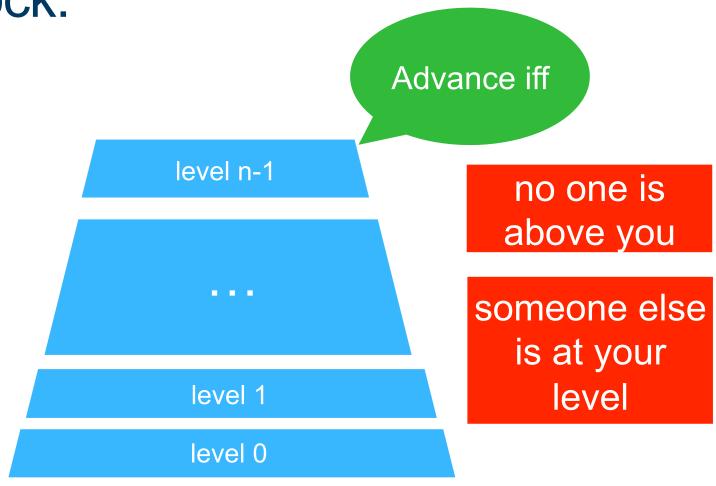
3

 $\forall q: \#\{t \mid p\} = k \land$ inv(a,pc,q,k)



Example filter lock: critical section try to increase n threads level in total level n-1 level 1 level 0

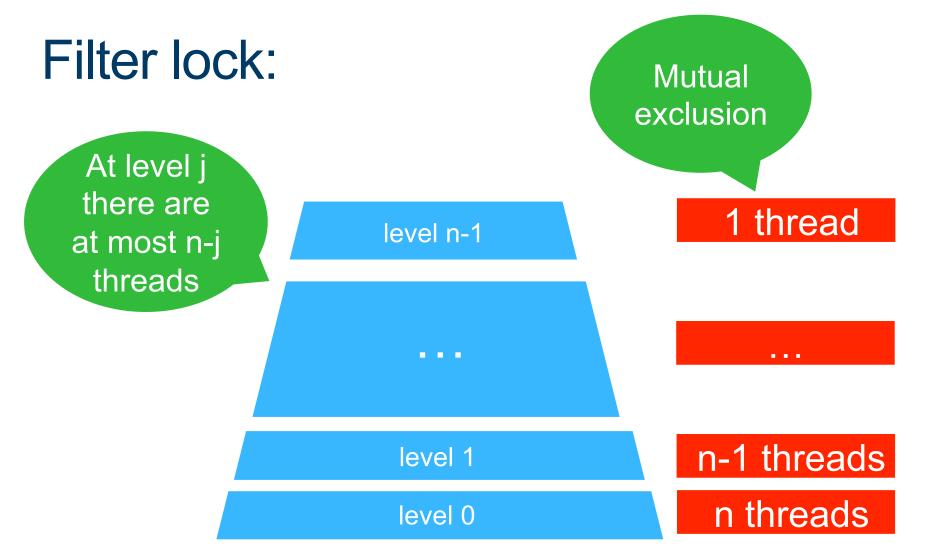
Filter lock:



Filter lock:

no one is above you

someone else is at your level



Filter lock in logic:

State modelled as function

no one is above you

someone else is at your level

 $\#\{ t \mid lv(t) > lv(me) \}=0$

 $\#\{ t \mid lv(t) = lv(me) \} > 1$

Filter lock in logic:

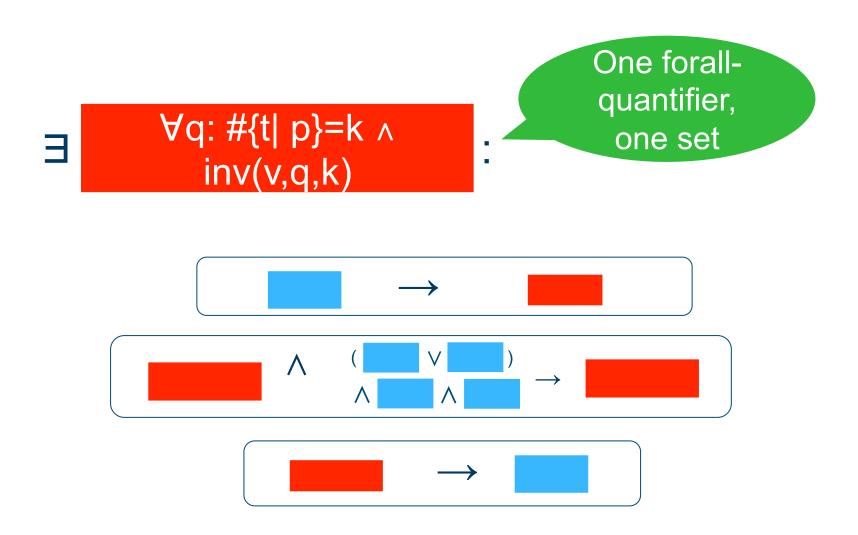
```
 \left( \begin{array}{c|c} \#\{t \mid lv(t) > lv(me)\} = 0 \end{array} \right) \#\{t \mid lv(t) = lv(me)\} > 1   |v':= lv[me \leftarrow lv(me) + 1] \wedge \dots
```

Constraints on invariant:

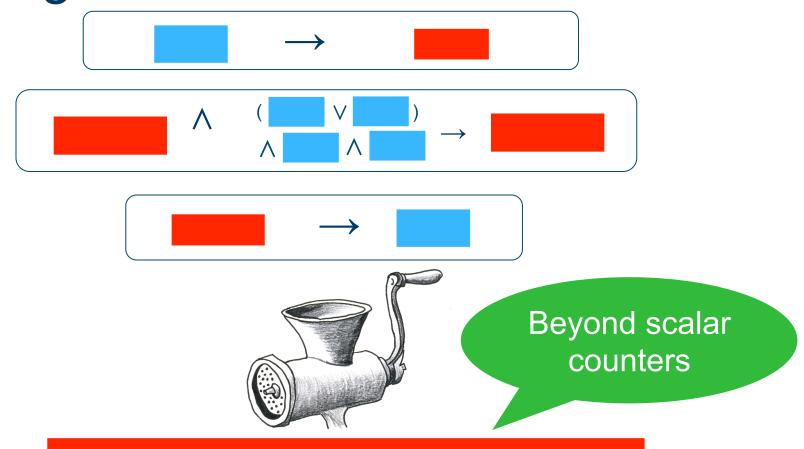
∃ inv(v):

```
inv(v)
                ∀t: lv(t)=0 ∧ n≥2
inv(v)
                                                    inv(v')
inv(v)
                       \#\{ t \mid |v(t) = n-1 \} \le 1
```

Restricting the search space:



Solving:



 $\forall q: 0 \le q \le n-1 \longrightarrow \#\{t \mid |v(t) \ge q\} \le n-q$

Evaluation:

Quantifiers + cardinalities

First to automatically verify

Program	Card	Property	inferred cardinalities	Time
intro [21]	✓	$(\exists t : pc(t) = 2) \to b < a$	$\#\{t\mid pc(t)=2\}$	1.2s
bluetooth [21]	✓	$(\exists t : pc(t) = 2) \to st = 0$	$\#\{t\mid pc(t)=2\}$	1.6s
tree traverse [21]	×	leaves = nodes + 1	_	4.2s
cache [59]	✓	$\#\{t \mid pc(t) = 3\} \le 1$	$\#\{t\mid pc(t)\geq 3\}$	0.7s
garbage collection	√	$\#\{t \mid 2 \le pc(t) \le 4\} \le 1 \land m = 1$	$\#\{t \mid 2 \le pc(t) \le 4\}$	10.18

Program	Property	Dragoi et al	7
ticket lock [21]	$\#\{t \mid pc(t) = 3\} \le 1$	VMCAI'14	
		#"	
filter lock [31]	$\#\{t \mid lv(t) = n - 1\} \le 1$	$\#\{t \mid lv(t) \ge q\}$	27.5s
Can do	see Section 2	$\#\{t \mid x(t) = x(q)\}$	0.8s

Can do cardinalities, if required

Evaluation

Quantifiers w/o cardinalities

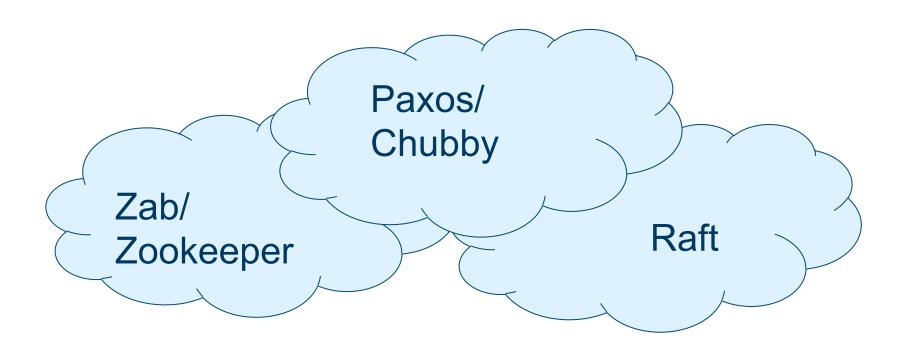
Abdulla et al. CAV'07

Program	Quantifiers	#II Competitive	1
Simplified Bakery [1]	2	0.4s when no	7
Lamport's Bakery [1]	2	0.5	
Bogus Bakery [1]	2	0.6s cardinalities	
Ticket Mutex [1]	2	o.5s are needed	

Sanchez et al. SAS'12

		T			
Program	Quantifiers	#∏	I[54]	P[54]	O[54]
barrier [54]	1	0.4s	0.1s	0.1s	0.1s
central barrier [54]	1	0.4s	0.1s	1.1s	6.2s
work stealing [22, 54]	1	0.5s	0.1s	0.1s	6.2s
dining philosophers [54]	0	8.2s	0.1s	6.3s	20s
robot 2x2 [54]	2	2.8s	0.2s	5.8s	1m45s
robot 2x3 [54]	2	16.1s	0.5s	16s	5m20s
robot 3x3 [54]	2	34.0s	0.9s	52s	19m28s
robot 4x4 [54]	2	TO	3.2s	5m3s	TO

What's with:



What's with:

Encoding of Paxos

#{...}

Algorithm 9 The OneThirdRule algorithm

```
1: Initialization:
      x_p := v_p
                                                            value of p
3: Round r:
      S_p^r:
         send \langle x_p \rangle
      T_p^r:
6:
7:
         if |HO(p,r)|
8:
             x_D := \text{the sm}
                                                         value
9:
             if more than 2n/3
                                                    are equal to \bar{x} then
10:
                  DECIDE(x)
```

Algorithm 8 The LastVoting algorithm

```
1: Initialization:
       x_D \in V, initially v_D \{v_D \text{ is the initial value of } p\}
       vote_p \in V \cup \{?\}, initially ?
       commit<sub>p</sub> a Boolean, initially false
       ready, a Boolean, initially false
       ts_D \in \mathbb{N}, initially 0
7: Round r = 4\phi - 3:
8:
       S_p^r:
9:
          send \langle x_p, ts_p \rangle to Coord(p, \phi)
10:
         T_p^r:
11:
            if p = Coord(p, \phi) and
               number of \langle \nu, \theta \rangle received > n/2 then
12:
               let \overline{\theta} be the largest \theta from (\nu, \theta) received
13:
                vote_p := one \ v \ such that \ \langle v \ , \ \overline{\theta} \rangle \ is \ received
14:
               commit_p := true
15: Round r = 4\phi - 2:
16:
        S_p^r:
17:
            if p = Coord(p, \phi) and commit_p then
18:
               send \langle vote_p \rangle to all processes
19:
         T_n^r:
20:
            if received \langle v \rangle from Coord(p, \phi) then
21:
               x_p := v ; ts_p := \phi
22: Round r = 4\phi - 1:
23:
         S_p^r:
24:
           if ts_p = \phi then
25:
               send \langle ack \rangle to Coord(p, \phi)
26:
         T_p^r:
27:
            if p = Coord(p, \phi) and
               number of (ack) received > n/2 then
28:
                   ready_p := true
29: Round r = 4\phi:
30:
        S_p^r:
31:
            if p = Coord(p, \phi) and ready_p then
32:
               send \langle vote_p \rangle to all processes
33:
         T_p^r:
34:
            if received \langle v \rangle from Coord(p, \phi) then
35:
               DECIDE(v)
36:
            if p = Coord(p, \phi) then
37:
               ready_n := false
               commit_p := false
```

Questions?

Invariant: one third rule

```
\forall p: dec(p) \ge 0 \rightarrow
(#{ t | x(t)=x(p) } > 2n/3 ∧ x(p) = dec(p) )
```